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ABSTRACT: In this present paper we have proved some fixed point results in generating Polish space 

(random space which is more general than the other spaces) with implicit relation, notable completeness of 

the space is not a compulsion.  
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I. INTRODUCTION 

The notion of probabilistic metric space was introduced by Menger in 1942 [13] and the first result about the 

existence of a fixed point of a mapping which is defined on a Menger space is obtained by Sehgel and Barucha-Reid 
[18].  

             A number of fixed point theorems for single valued and multi-valued mappings in Menger probabilistic 

metric space have been considered by many authors [1], [2],[4],[5],[6],[8],[9],[17],[23]. In 1998, Jungck and Rhodes 

[10] introduced the concept weakly compatible maps and proved many theorems in metric space. Hybrid fixed point 

theory for nonlinear single-valued and multi-valued maps is a new development in the domain of contraction type 

multi-valued theory discussed by [3], [7], [15],[16],[19] and [22].  

 Jungck and Rhoades [10] introduced the weak compatibility to the setting of single valued and multi-

valued maps. Singh and Mishra [21] introduced (IT)-commutativity for hybrid pair of single valued and multi-

valued maps which need not be weakly compatible. In 2005, Mihet [14] proved a fixed point theorem concerning 

probabilistic contractions satisfying an implicit relation. Shrivastav et al. [20] and others [11], [12], proved fixed 

point result in fuzzy probabilistic metric space. 
In this chapter, we choose to utilize the notion of occasionally weakly compatibility to prove our results in fuzzy F-

Menger space, which is a wider and suitable framework in many situations and use point wise R-weakly commuting 

mappings in fuzzy probabilistic metric spaces satisfying contractive type implicit relations. Here one may observe 

that we need not impose the completeness requirement of the space or the containment of the ranges of the involved 

mappings. 

II. PRELIMINARIES 

Let us define and recall some definitions:  

Definition 2.1: A fuzzy �probabilistic metric space (F FPM space) is an ordered pair (�,  ���) consisting of a 

nonempty set � and a mapping ��� from � × � into the collections of all distribution functions ��� ∈ � × �for 

all � ∈ [0,1]. For �, � ∈ � we denote the distribution function ���(�, �) by ��(�,�)� and ��(�,�)� (�) is the value of ��(�,�)� at � in �. The functions ��(�,�)� for all � ∈ [0,1] assumed to satisfy the following conditions: 

(a) � !(",#)($) = &∀  $ >  0  �((  � =  �, 
(b) � !(",#)()) =  )   ∀ " , # *+ ,, 
(c) � !(",#) = � !(#,")∀ " , # *+ ,,    
(d) -. � !(",#)($) =  & and � !(#,/)(0) =  &  ⟹ ���(�,2)(� + 4) =  1   ∀ � , � , 6 ∈ � �	7 �, 4 >  0. 

Definition 2.2: A commutative, associative and non-decreasing mapping 9: [0, 1] × [0, 1] →  [0, 1] is a t-norm if and 

only if 9(�, 1) = 0 for all � ∈ [0,1], 9(0, 0)  =  0and 9(<, 7) ≥  9(�, >)for  < ≥ �, 7 ≥  >. 
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Definition 2.3: A Fuzzy F-Menger space is a triplet (�, ���, 9), where (�, ���) is a FPM-space,9 is a t-norm and the 
generalized triangle inequality ���(�,2)(� + 4) ≥ 9 (���(�,2)(�), ���(�,2)(4))    
Holds for all �, �, 6 �	 �  �, 4 > 0 and � ∈ [0,1]. 
The concept of neighborhoods in Fuzzy C-Menger space is introduced as 

Definition 2.4: Let (�, ���, 9)be a Fuzzy F-Menger space. If � ∈ �, ε > 0 and λ ∈ (0, 1), then (ε,λ)- neighborhood 

of �, called D�(ε,λ) is defined by  D�(ε, λ)  =  {� ∈ �: ��(�,�)� (ε) > (1 − λ)} 
An(ε,λ)- topology in � is the topology induced by the family  {D�(ε,λ): � ∈ �, ε >  0, � ∈ [0, 1]and λ ∈ (0, 1)} of neighborhood. 

Remark: If 9 is continuous, then Fuzzy F-Menger space (�, ���, 9) is a Hausdorff space in (ε, λ)-topology. 

Let (�, ���, 9)be a complete Fuzzy F-Menger space and J ⊂ �. Then J is called a bounded set if  

  lim  �	( N→O  �,�∈P ��(�,�)� (�) = 1 

Definition 2.5: A sequence {�Q} in (�, ���, 9)is said to be convergent to a point � in � if for every ε >  0andλ >  0, 

there exists an integer R =  R(ε, λ) such that �Q ∈ D�(ε,λ)    for all   	 ≥ R 

or equivalently ���(�Q, �; ε) > 1 − λfor all 	 ≥  R and � ∈ [0,1]. 
Definition 2.6: A sequence {�Q} in (�, ���, 9) is said to be Cauchy sequence if for every ε >  0 andλ >  0, there 

exists an integer R =  R(ε, λ) such that  ���(�Q, �T; ε) > 1 − λ      ∀  	, � ≥ R for all � ∈ [0, 1]. 
Definition 2.7: A Fuzzy F-Menger space (�, ���, 9) with the continuous t-norm is said to be complete if every 

Cauchy sequence  in � converges to a point in � for all � ∈ [0,1]. 
Definition 2.8:Let (�, ���, 9)be a Fuzzy F-Menger space. Two mappings (, 
: � → � are said to be weakly 

compatible if they commute at coincidence point for all � ∈ [0,1]. 
Lemma 2.1: Let {�Q} be a sequence in a Fuzzy F-Menger space (�, ���, 9), where 9 is continuous and 9(�, �) ≥ � 

for all � ∈ [0, 1],if there exists a constant U ∈ (0,1) such that   ∀  � >  0 and  	 ∈ R,   9V���(�Q, �QWX;  U�)Y ≥   9V���(�QZX, �Q;  �)Y 

for all � ∈ [0,1] then {�Q} is Cauchy sequence. 

Lemma 2.2: If (�, 7) is a metric space, then the metric7 induces, a mapping ��: � × � → [ defined by ���(�, \) = ]��(� − 7(�, \)), �, \ ∈ � for all � ∈ [0,1]. Further if                             9 ∶ [0, 1]  ×  [0, 1] → [0, 1] is defined by 9(�, >)  =  ��	{�, >}, then (�, ���, 9) is a Fuzzy           F-Menger space. It is complete if (�, 7)is complete.  

Definition 2.9: Let (�, ���, 9)be a Fuzzy F-Menger space. Maps _: � → � and `: � → ab(�) 
(1)   _ is said to be ` weakly commuting at � ∈ � �( __� ∈ `_�. 
(2)   are weakly compatible if the commute at their coincidence points,  

 i.e. if  _`� =  `_� whenever _� ∈ `�. 

(3)     are (IT) commuting at � ∈ � if  _`� ⊂ `_� whenever _� ∈ `�.  

Definition 2.10: Two self maps ( and 
 of a set � are occasionally weakly compatible iff there is a point � in � 

which is a coincidence point of ( and 
 at which ( and 
 commute. 

Definition 2.11:  A function ϕ: [0, ∞) → [0, ∞)  is said to be a∅-function if it satisfies the following conditions: 

(i) f(g) = )  if and only if g =  ) 

(ii) f(g) is stsrictly increasing and f(g) → ∞ hi g → ∞ 

(iii) f(g) is left continuous in (), ∞) and 

(iv)  f(g) is continuous at ).    
An altering distance functions with the additional property that ℎ(9)  → ∞  as 9 → ∞ generates function k in the 
following way.  k(9) = l _��{_: ℎ(_) < 9}   �( 9 > 00                                 �(  9 = 0 n  
It can be easily seen thatϕ is a k -function.  

Lemma 2.3: Let (�, ���, 9)be a fuzzy F-Menger space, J and b are occasionally weakly compatible self maps of �. 

If Jand b have a unique point of coincidence, o = J� = b�, then o is the unique common fixed point of J and b. 
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Proof:- Since J and b are occasionally weakly compatible, there exists a point � ∈ �such that J� =  b� =  o and Jb� =  bJ�. Thus, JJ� =  Jb� =  bJ�, which says that Ax is also a point of coincidence of J and b. Since the 

point of coincidence o =  J� is unique by hypothesis, bJ� =  JJ� =  J�,and o =  J�is a common fixed point 

of J and b. Moreover, if 6 is any common fixed point of J and b, then6 =  J6 =  b6 =  o by the uniqueness of 
the point of coincidence. 

III. MAIN RESULTS 

Theorem 3.1:  Let (�, ���, 9) be a Menger space. Let (, 
: � → � �	7 �, p: � → ab(�) such that  

3.1.1   ((, �) �	7  (
, p) satisfy the common property (EA),   

3.1.2     ((�) �	7 
(�) are closed, 

3.1.3    Pair ((, �) is S-JSR maps and pair (
, p) is G-JSR maps, 

3.1.4     9V]��(��, p�, U�)Y  ≥ ∅q��	rgV���((�, 
�, �)Y, 9V���((�, ��, �)Y, 9V���((�, 
�, �)Y, 9V���((�, p�, �)Y, 9V���(��, 
�, �)Yst  
Then (, 
, � �	7 p have a common fixed point in �. 
 Proof: By 3.1.1 there exist two sequences {�Q}  �	7 {�Q}  in � and � ∈ �,  J, b �	 ab(�) such that limQ→O ��Q = J  and limQ→O p�Q = b, and limQ→O (�Q = limQ→O 
�Q = � ∈ J ∩ b.   
 Since ((�) �	7 
(�) are closed, we have � =  (4 and � =  
v for some 4, v ∈ �. 
Now by 3.1.4 we get  9V���(]�Q , pv, U�)Y  ≥ ∅q��	r9V���((�Q , 
v, �)Y, 9V���((�Q , ��Q , �)Y, 9V���(
v, pv, �)Y, 9V���((�Q , pv, �)Y, 9V���(��Q , 
v, �)Yst 
On taking limit 	 → ∞, we obtain 9V]��(J, pv, U�)Y  ≥ ∅q��	r9V���((4, 
v, �)Y, 9V���((4, J, �)Y, 9V���(
v, pv, �)Y, 9V���((4, pv, �)Y, 9V���(J, 
v, �)Yst  ≥ ∅9 wV���(
v, pv, �)Yx  > 9V���(
v, pv, �)Y > ���(
v, pv, �)  

 

Since 
v = (4 ∈ J and ���(
v, pv, �) ≥ ]��(J, pv, U�) > ���(
v, pv, �).   
Hence 
v ∈ pv. Similarly 

9V]��(�4, p�Q , U�)Y ≥ ∅ y��	 z 9V���((4, 
�Q , �)Y, 9V���((4, �4, �)Y,9V���(
�Q, p�Q , �)Y, 9V���((4, p�Q , �)Y, 9V���(�4, 
�Q , �)Y{|  
9V]��(�4, b, U�)Y ≥ ∅ y��	 z 9V���((4, 
v, �)Y, 9V���((4, �4, �)Y,9V���(
v, b, �)Y, 9V���((4, b, �)Y, 9V���(�4, 
v, �)Y{| 

 ≥ ∅ w9V���((4, �4, �)Yx  > 9V���((4, �4, �)Y > ���((4, �4, �)  

Since (4 =  
v ∈ J and  9(���((4, b, �)) ≥ 9(���((4, �4, �)) > 9(���((4, �4, �))   

We get (4 ∈ �4. 
Now as pair ((, �) is S-JSR maps therefore (� ∈ ��  
and similarly as pair (
, p) is G-JSR maps therefore 
� ∈ p� 9V���((�Q , 
�, �)Y ≥ 9V]��(��Q , p�, �)Y  

≥ ∅ y��	 z 9V���((�Q, p�, �)Y, 9V���((�Q , ��Q, �)Y,9V���(
�, p�, �)Y, 9V���((�Q , p�, �)Y, 9V���(��Q , 
�, �)Y{|  

On taking limit 	 → ∞, we obtain  

9V���(�, 
�, �)Y ≥ ∅ y��	 z 9V���(�, 
�, �)Y, 9V���(�, J, �)Y,9V���(
�, p�, �)Y, 9V���(�, p�, �)Y, 9V���(J, 
�, �)Y{|   

≥ ∅ y��	 z 9V���(�, 
�, �)Y, 9V���(�, J, �)Y,9V���(
�, p�, �)Y, 9V���(�, p�, �)Y, 9V���(J, �, �/2)Y, 9V���(�, 
�, �/2)Y{|  
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By triangular inequality and as � ∈ J ∩  b, we obtain 9V���(�, p�, �)Y ≥ 9V���(�, p�, �)Y ⟹ 
� = �.  
Again  9V���((�, 
�Q , �)Y ≥ 9V]��(��, p�Q , �)Y  

≥ ∅ y��	 z 9V���((�, 
�Q , �)Y, 9V���((�, ��, �)Y,9V���(
�Q , p�Q , �)Y, 9V���((�, p�Q , �)Y, 9V���(��, �, �)Y{|  

On taking limit 	 → ∞, we obtain  

9V���((�, �, �)Y ≥ ∅ y��	 z 9V���((�, �, �)Y, 9V���((�, ��, �)Y,9V���(�, p�, �)Y, 9V���((�, b, �)Y, 9V���(��, �, �)Y{|  
9V���((�, �, �)Y ≥ ∅ ���	 � 9V���((�, �, �)Y, 9V���((�, ��, �)Y,

9V���(�, p�, �)Y, 9V���((�, �, �/2)Y + 9 ���� w��, �, ��x� , 9V���(��, �, �)Y ��  

By triangular inequality and as � ∈ J ∩ b, we obtain ���((�, �, �) ≥ ���((�, �, �)  ⟹ (� = �.  
Hence � =  (� ∈ �� �	7 � = 
� ∈ ��. 
Example: Let � =  [1, ∞) with usual metric. Define �: � → � �_ �� =  2 + �/3 and `: ab(�)  →  � �_ `� = [1,2 + �]. Consider the sequence {�Q}  =  {3 + 1/	}. Then all conditions are satisfies of the theorem and hence 3 is 

the common fixed point for all α∈[0,1].  

Theorem 3.2: (�, ���, 9) be a complete F Menger space, where t is continuous and    9(�, �)  ≥ � for all � in [0,1]. 
Let (, 
: � →  � and �� , p�  are sequences of functions from � into CB(X) such that  

3.2.1 ((, ��) �	7 (
, p�) satisfy the common property (EA),   

3.2.2 ((�) �	7 
(�) are closed, 

3.2.3 pair ((, ��) is ��-JSR maps and pair (
, p�  ) is p�-JSR maps, 

3.2.4 9(]��V���, p��, U�Y) ≥ ∅ ��	 � 9V���((�, 
�, �)Y, 9V���((�, ���, �)Y,9 w���V
�, p��, �Yx , 9 w���V(�, p��, �Yx + 9V���(���, 
�, �)Y,��     
Then (, 
, �� and p�have a common fixed point in �. 
Proof: Same as above theorem for each sequences �� and p� .  
Theorem 3.3: Let (�, ���, 9) be a complete F-Menger space, where 9 is continuous and  9(�, �) ≥ � for all � �	 [0,1]. Let J, b, � �	7 ` be self mappings from � into itself such that  

3.3.1 J(�) ⊆ `(�) and b(�) ⊆ �(�); 
3.3.2 the pair (J, �) is semi compatible and (b, `) is weak compatible; 

3.3.3 one of J �v � is continuous; for some φ ∈ Φ, there exist U ∈ (0,1) such that for all �, � ∈ � �	7 � > 0 

3.3.4 ∅V9(��(J�, b�, U�)Y, 9V��(��, `�, �)Y, 9V��(J�, ��, �)Y, 9V��(b�, `�, U�)Y ≥ 0;   
3.3.5 ∅V9(��(J�, b�, U�)Y, 9V��(��, `�, �)Y, 9V��(J�, ��, �)Y, 9V��(b�, `�, U�)Y ≥ 0  then J, b, � �	7 ` have 

unique common fixed point in �. 
Proof: Let x0 be any arbitrary point of �, �_ J(�)⊆`(�) and b(�)⊆�(�) there exists x1, x2 in X such that J��  = `�X, b�X  =  ���. Inductively, construct sequences {�Q} �	7 {�Q} �	 � such that ��QWX = J��Q = `��QWX , ��QW� =b��QWX = ���QW�  for 	 =  0,1,2, … . .. 
Now by (3.3.4)  ∅V9(��(J��Q, b��QWX, U�)Y, 9V��(���Q , `��QWX, �)Y, 9V��(J��Q, ���Q, �)Y, 9V��(J��Q, b��QWX, U�)Y ≥ 0  ⟹ ∅V9(��(��QWX, ��QW�, U�)Y, 9(��(��Q, ��QWX, �), 9(��(��QWX, ��Q, �), 9V��(��QW�, ��QWX, U�)Y ≥ 0    9V��(��QW�, ��QWX, U�)Y ≥ 9V��(��QWX, ��Q , �)Y  ⟹ 9V��(��QW�, ��QWX, U�)Y ≥ 9V��(��QWX, ��Q, �)Y  

Again putting � =  ��QW� and � =  ��QWXin (3.3.5), we have ∅V9(��(J��QW�, b��QW�, U�)Y, 9(��(��QWX, ��QW�, �), 9 w��(��QW�, ��QW�, �), 9V��(��QWX, ��QW�, �)Yx ≥ 0  ��(��QW�, ��QW�, �) ≥ ��(��QW�, ��QWX, �)   
Hence by Lemma 2.1, {�Q} is Cauchy sequence in �. Therefore {�Q} converge to � �	 �. Therefore its subsequences {J��Q}, {`��QWX}, {b��QWX}, {���QW�} also converge to �. 
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Case I: If � is continuous, we have  

                                  �J��Q → �� , ����Q →  ��   

So, weak compatibility of the pair (J, �) 
�4�_ J���Q →  �� �_ 	 → ∞ Step (I): By putting � =  ���Q  , � = ��QWX in (3.3.4), we obtain that  ∅[9{��(J���Q, b��QWX, U�)}, 9{��(����Q , `��QWX, �)}, 9{��(J���Q, ����Q , �)}, 9{��(b��QWX, `��QWX, U�)}] ≥ 0  

Now letting 	 → ∞ and by the continuity of the 9- norm, we have ∅[9{��(��, �, U�)}, 9{��(��, �, �)}, 9{��(��, ��, �)}, 9{��(�, �, �)}] ≥ 0   ⟹ {��(��, �, U�)}, {��(��, �, �), 1,1} ≥ 0  

Now as φ is non-decreasing in the first argument, we have  ⟹ φ {��(��, �, �)}, {��(��, �, �), 1,1} ≥ 0   

Using (��), we get ��(��, �, �) ≥  1, for all � > 0, which gives ��(��, �, �) =  1, that is, �� =  � 
Step (II): By putting � =  � �	7 � =  ��QWX, we obtain that  ∅[9{��(J�, b��QWX, U�)}, 9{��(��, `��QWX, �)}, 9{��(J�, ��, �)}, 9{��(b��QWX, `��QWX, U�)}] ≥ 0   
On taking limit 	 → ∞ �	7 �_ �� =  � & b��QWX, ` ��QWX  →  �, we get  ∅{��(J�, �, U�), 1, ��(J�, `�, �), 1} ≥ 0  
Now as φ is non-decreasing in the first argument, we have ∅{��(J�, �, �), 1, ��(J�, �, �), 1} ≥ 0   

Using , we get ��(J�, �, �) ≥ 1,  for all � > 0, which gives ��(J�, �, �) = 1,   
that is J� =  � =  ��. 
Step (III): By (3.3.1)J(�) ⊆ `(�), there exists o �	 � such that J� =  � = �� = `o. 
By putting � =  ��Q and � =  o in (3.3.4) of the theorem, we obtain that   ∅[9{��(J��Q, bo, U�)}, 9{��(���Q , `o, �)}, 9{��(J��Q, ���Q , �)}, 9{��(bo, `o, U�)}] ≥ 0  
On taking limit 	 → ∞ and as J��Q , ���Q →  �, we get  ∅{��(J�, bo, U�), 1,1, ��(bo, �, U�), 1} ≥ 0    

By using, we get ��(�, bo, U�) ≥ 1, for all � >  0, which gives ��(�, bo, U�) = 1, that is             bo = �. Therefore bo =  `o =  �. Since (b, `) is weak compatible, we get `bo =  b`o, it implies b� =  `�. 
Step (IV): Now putting � =  � and � =  � in (3.2.4) and as J� =  � =  �� &  b� =  `�, 
We get,  ∅[9{��(J�, b�, U�)}, 9{��(��, `�, �)}, 9{��(J�, ��, �)}, 9{��(b�, `�, U�)}] ≥ 0   ∅[9{��(J�, b�, U�)}, 9{��(��, `�, �)}, 1,1] ≥ 0    
Now as φ is non-decreasing in the first argument, we have  ⟹ ∅{��(J�, b�, �), ��(J�, b�, �), 1,1} ≥ 0     

Using (��), we get ��(J�, b�, �) ≥ 1, for all � > 0, which gives ��(J�, b�, �) = 1, that is, J� =  b�. `ℎ�_ � = J� =  �� =  b� =  `�.  
Case II: If A is continuous i.e. J���Q → J�. also the pair (J, �)  is semi-compatible, therefore J���Q → �� . By the 

uniqueness of the limit J� =  ��. 
Step (V) By putting � =  � �	7 � =  ��QWX in (3.3.4), we get  ∅[9{��(J�, b��QWX, U�)}, 9{��(��, `��QWX, �)}, 9{��(J�, ��, �)}, 9{��(b��QWX, `��QWX, U�)}] ≥ 0   
On taking limit 	 → ∞ and as b��QWX, `��QWX → �, we get  9{��(J�, �, U�), 1, ��(J�, �, �)} ≥ 0.  
Now as ∅ is non-decreasing in the first argument, we have  ∅{��(J�, �, �), 1, ��(J�, �, �)} ≥ 0.   
Using (��), we have ��(J�, �, �) ≥ 1 for all � > 0, which gives � = J�. 
The rest of the proof follows from step (III) of the case I. 

Uniqueness of common fixed point  

Let 4 be another common fixed point of J, �, b �	7 `, then 4 =  J4 =  �4 =  b4 =  `4. Now putting � = � �	7 � =  4 in (IV), we get  

φ[9{��(J�, b4, U�)}, 9{��(��, `4, �)}, 9{��(J�, ��, �)}, 9{��(b4, `4, U�)}]  ≥ 0  ⟹ ∅[9{��(�, 4, U�)}, 9{��(�, 4, �)}, 9{��(�, �, �)}, 9{��(4, 4, U�)}]  ≥  0   ⟹ ∅[9{��(�, 4, U�)}, 9{��(�, 4, �)}, 1, 1]  ≥  0  
Now as ∅ is non-decreasing in the first argument, we have ∅[{��(�, 4, �)}, {��(�, 4, �)}, 1, 1]  ≥ 0  
we have ��(�, 4, �) ≥  1 for all � > 0, which gives � =  4. 
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Corollary 3.4 Let (�, ���, 9) be a complete F-Menger space, where 9 is continuous and 9(�, �) ≥  � for all a in [0,1]. 
Let J, b, � �	7 ` be self mappings from � into itself such that  

3.4.1   J(�)  ⊆ `(�) ⋂�(�); 
3.4.2   the pair (J, �) is semi compatible and (J, `) is weak compatible; 

3.4.3   one of J �v � is continuous; for some ∅ ∈ Φ, there exist U ∈ (0,1) such that for all    

               �, � ∈ � �	7 � >  0.  
3.4.4    ∅[9{��(J�, J�, U�)}, 9{��(��, `�, �)}, 9{��(J�, ��, �)}, 9{��(J�, `�, U�)}]  ≥ 0; 
3.4.5    ∅[9{��(J�, J�, U�)}, 9{��(��, `�, �)}, 9{��(J�, ��, U�)}, 9{��(J�, `�, �)}]  ≥ 0 

then J, � �	7 ` have unique common fixed point in �. 
Proof: Putting b =  J in Theorem 3.3. 

Corollary 3.5  : Let (�, ���, 9) be a complete F-Menger space, where t is continuous and t(p,p) ≥ p for all a in [0,1]. 

Let A, B, S and T be self mappings from M into itself such that  

3.5.1   J(�) ⊆ `(�) and b(�) ⊆ �(�); 
3.5.2.   the pairs (J, �) �	7 (J, `) are semi-compatible; 

3.5.3.   one of J, b, ` �v � is continuous; for some ∅ ∈ Φ, there exist U ∈ (0,1) such that for all  

               �, � ∈ � �	7 � >  0. 
3.5.4.    ∅[9{��(J�, b�, U�)}, 9{��(��, `�, �)}, 9{��(J�, ��, �)}, 9{��(b�, `�, U�)}]  ≥ 0;   
3.5.5.    φ[9{��(J�, b�, U�)}, 9{��(��, `�, �)}, 9{��(J�, ��, U�)}, 9{��(b�, `�, �))}]  ≥ 0, 
 then J, b, � �	7 ` have unique common fixed point in �. 
Proof: As semi-compatible mappings are weak compatible, the proof follows from  

Theorem 3.3.    

Example 1: Let � =  [0,1] and metric d is defined by 7(�, �)  =  |� − �|. For each � define 

��(�, �, �) = l 1   (�v   � = �]�(�)  � ≠ �   n where ]�(�) = � 0   �(   � ≤ 0��   �( 0 < � < 11   �(    � ≥ 1 n 
Clearly, (�, ���, 9)  is a complete F-Menger space where t is defined by 9(�, �) ≥  �. The sequence �Q = XQ. Let J, b, � �	7 ` are defined as  

                    J� = �� , `� = �, b� =  �/5  �	7 �� =  �/2. If U =  1 �	7 � = 1.   
 So, we see the all conditions of theorem 5.3.3 are satisfied and hence 0 is the common fixed point in �. 
Example 2: Let � =  [0,2] and metric d is defined by 7(�, �) =  |� − �|. 
For each � > 0, we define ��(�, �, �) = � ��

��W�(�,�)    �(   � > 0 0   �(         � = 0     n  
Define self maps J, �, b �	7 ` as follows 

�� = zX�    0 ≤ � ≤ 1 �   1 ≤ � ≤ 2 n, J� = �W�� ,  b� = XW��  and  

`� = z 1,   0 ≤ � ≤ 1�Z�� ,   1 ≤ � ≤ 2n.  The sequence {�Q} is defined as �Q = 1 − X�Q.  
bX  =  1 �	7 X̀  =  1 ⟹ `bX =  b X̀, clearly {b, `} is weak compatible. 

��Q  =  
n2

1
1 −   �	7  J�Q   =  

n10

1
1 − , clearly  J�Q → 1 �	7  ��Q → 1   �. �.   � = 1.  

J��Q    =  
n20

1
1− , �J�Q    =  

2

1 . Now limQ→O �(J��Q   , ��, �) = �(1,1, �) = 1.     
Hence {J, �} is semi compatible but not compatible as  limQ→O���(J�Q , bJ�Q, �) = limQ→O��� w1 − X��Q , X� , �x = ��W � < 1, ∀ �   

So, for all U ∈ (0,1)  we see the all conditions of theorem 5.3.3 are satisfied and hence 1 is the common fixed point 

in �. 
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Example 3: Let � =  [0,2] and metric 7 is defined by 7(�, �)  =
−+

−

yx

yx

1
. For each �  

Define ��(�, �, �) = l 1   (�v   � = �](�)  (�v � ≠ �, (�, ���, 9) n 
Where ]�(�) = � 0          �(   � ≤ 0��7(�, �)  �(   0 < � < 11   �(   � ≥ 1 n  
Clearly, (�, ���, 9) is a complete F-Menger space where 9 is defined by  9(�, �)  ≥  �.  
J� = z 1   0 ≤ � ≤ 1�Z��    1 < � < 2n, �� = z 1            � = 1�W��    �9ℎ�vo�_�n,  
b� = z��    0 ≤ � ≤ 1 2⁄1          � ≥ 1 2⁄ n    and `� = z1   0 ≤ � ≤ 1��      � ≥ 1 2⁄ n  
The sequence {�Q} is defined as �Q =  

n2

1
2 − . 

bX  =  1 �	7 X̀  =  1 ⟹ `bX =  b X̀ �	7 b�  =  �̀  =  1 ⇒  `b� =  b �̀ . Clearly {b, `} is weak 

compatible.��Q = 1 − XX�Q and J�Q  = 1 + X�Q,  clearly J�Q → 1 �	7 ��Q → 1. That is � = 1, J��Q  =  1 , �J�Q  =�� + X��Q.    
Now    ¢�����(J��Q, ��, �) = ���(1,1, �) = 1.    

Hence {J, �} is semi compatible but not compatible as ¢�� ��(J��Q, �J�Q , �)  =  ¢�� ��(1, �� + X��Q , �)  =  � 1/6 <  1.     
So, for all U ∈ (0,1)  we see the all conditions of Theorem 3.3 are satisfied and hence 1 is the common fixed point 

in �. 
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